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Abstract

Neural rankers have achieved strong retrieval effectiveness but
require large amounts of labeled data, limiting their applicability in
few-shot settings. In this paper, we address the sample inefficiency of
neural ranking methods by introducing a Reinforcement Learning
(RL)-based re-ranking model that achieves high effectiveness with
minimal training data. Built on a Deep Q-learning Network (DQN)
framework, our approach is designed for few-shot settings, maximiz-
ing sample efficiency to ensure robust generalization from limited
interactions. Extensive experiments show that our model signifi-
cantly outperforms data-intensive methods and existing few-shot
baselines, demonstrating RL’s potential to enhance IR capabilities
in few-shot scenarios.
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1 Introduction

Neural rankers have greatly enhanced IR effectiveness [38, 42],
However, these models typically require vast amounts of labeled
training data to perform well, limiting their applicability in few-
shot settings, where only a small number of labeled examples are
available due to time, cost, or data constraints [3, 5, 25, 30]. A natural
solution in few-shot settings is lexical retrievers like BM25 [26],
which rank documents based on term frequency statistics without
requiring training. However, these models rely on surface-level
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term matching and so fail to capture deep semantic relationships
[1, 2, 6, 9]. Neural rankers overcome this limitation by leveraging
large-scale training data [13, 17, 37], but their reliance on extensive
labeled data makes them impractical in few-shot settings.
Background Approaches. Given the limitations of both lexical
models and neural ranking methods in few-shot settings, there is a
growing need for ranking approaches that can effectively operate
with minimal labeled data. One promising direction is to explore
methods that can learn from limited feedback, rather than relying
on large labeled datasets. Sun et al. [34] proposed MetaAdaptRank,
which employs synthesizing contrastive weak supervision and us-
ing meta-learning to filter noisy signals. Unlike MetaAdaptRank,
which generates synthetic data, Sinhababu et al. [32] proposed a
method that leverages prompting by retrieving similar queries from
a training set and using them as pairwise ranking examples during
inference. This augmentation allows LLMs to make more informed
ranking decisions, improving both in-domain and out-of-domain re-
trieval without requiring model fine-tuning. On the other hand, P3
Ranker [10] bridges the gap between pre-trained language models
(PLMs) and ranking tasks by using prompt-based learning to align
ranking with PLM training and pre-finetuning to inject ranking-
specific knowledge. Unlike the two aforementioned methods, the
P3 Ranker focuses on structured PLM adaptation, making it suitable
for few-shot ranking with minimal labeled data. While P> Ranker
demonstrates strong performance in few-shot settings, its effec-
tiveness still depends on pre-finetuning, which may not always be
feasible when intermediate tasks are unavailable or when labeled
data is highly limited.

On the other hand, Reinforcement Learning (RL) [36] provides a
suitable framework by enabling models to learn optimal ranking
behaviors through interactions and rewards rather than extensive
labeled data. Contrary to common belief, RL can be effective in
certain few-shot scenarios [12, 28, 29]. By framing ranking as a se-
quential decision-making task [40], RL allows models to iteratively
refine rankings based on feedback signals, making it particularly
adaptable in few-shot scenarios.

Reinforcement learning (RL) [35] has gained traction in sev-
eral information retrieval (IR) tasks, particularly in modeling doc-
ument ranking as a sequential decision-making process through
Markov Decision Processes (MDPs). In this framework, at each time
step, an agent selects a document based on the current observa-
tion (e.g., ranking position and remaining unranked documents),
with rewards often defined in terms of ranking metrics like NDCG
(Normalized Discounted Cumulative Gain). Various IR tasks, such
as session search, have been formulated as MDPs to model user
interactions over multiple queries, optimizing document ranking
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across sessions [7, 44]. Similarly, RL-based ranking has been applied
to search result diversification [7, 41] and multi-page search [43],
where the RL agent learns to balance relevance and diversity across
search results. Specific approaches such as MDPRank [11, 43, 46]
and REINFORCE-based document ranking [40] optimize ranking
policies using policy gradient methods. For instance, in [41], search
result diversification is modeled as an MDP, where each ranking po-
sition represents a decision point, and the agent selects documents
sequentially. However, policy gradient methods tend to be sample-
inefficient, requiring extensive interactions with the environment
due to noisy gradient estimates and high variance in training [20].
This inefficiency poses challenges for few-shot settings.

The CUOLR model [45] extends the MDP-based ranking frame-

work by making the ranking task click model-agnostic, enabling
generalization across different user feedback models. To achieve
this, CUOLR incorporates the Soft Actor-Critic (SAC) algorithm, a
reinforcement learning approach originally designed for continuous
action spaces. However, SAC’s performance and sample efficiency
degrade in discrete action spaces due to its design for continuous
domains. Additionally, actor-critic algorithms like SAC rely on an
on-policy critic, whereas value-based methods like DQN typically
achieve better performance in discrete-action environments [33].
Rationale and Proposed Approach. To address sample ineffi-
ciency, which limits methods like MDPRank in few-shot settings,
we propose a ranking strategy based on Deep Q-learning Networks
(DQN), a sample-efficient value-based RL approach [18, 19]. In this
framework, we approximate the Q-function with a neural network
to learn the expected reward of ranking decisions. The key fea-
tures of our approach that make it well-suited for few-shot settings
include: (1) Experience replay, which stores and reuses past interac-
tions, breaking correlations between consecutive ranking decisions
and enhancing learning diversity—critical when training data is
limited. (2) Temporal credit assignment [22], which evaluates long-
term rewards, allowing the model to learn cumulative effects over
time rather than focusing solely on immediate rewards. This is
particularly valuable in ranking, where a document’s position may
have delayed effects on overall ranking quality.
Key Contributions. We address the challenge of sample inef-
ficiency in RL-based ranking for few-shot settings, proposing a
re-ranking model specifically designed to perform effectively with
limited training data. Our approach leverages DQN to maximize
data efficiency and improve generalization in few-shot settings.
Our approach enables the model to learn robust ranking policies
from a minimal training dataset, achieving competitive ranking
effectiveness even in data-constrained scenarios. We provide em-
pirical evidence that our model can achieve ranking performance
surpassing lexical ranking methods that do not require training
data and far superior performance to neural rankers that by their
nature require significantly larger training datasets. We further
show that our approach surpasses earlier RL-based rankers, such
as MDPRank, in learning from limited training data.

2 Proposed Approach

Let us assume that for a few-shot (FS) settings, there exists a query
pool Qfs consisting of a limited set of queries Qrs = {q1, g2, . -
Further let each query q; € QFg be associated with a set of relevant

. qn}
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documents Dy, with k documents Dy, = {d1,da,...,dr}. The ob-
jective of our task is to train a re-ranking model FSRank with this
small-sized training dataset.

Description of the RL Model. We formulate document re-ranking
as a Markov Decision Process (MDP). [23], MDPs are stochastic
models well-suited for sequential decision-making. In this formula-
tion, each step involves selecting a document for the next position in
the list. This enables the integration of contextual information, such
as the current time step and remaining documents, into the state
representation, leading to more informed ranking decisions. The
MDP in our work is defined as a quadruple (S, A, T, R), representing
states, actions, a transition function, and rewards as follows:

States. The states S represent the environment. For ranking, the
agent must be aware of the current ranking position and the set
of candidate documents C. At time step ¢, the state s; is defined
as the pair [t, C;], where C; denotes the unsorted set of candidate
documents that remain to be ranked.

Actions. The actions A refer to the set of discrete actions avail-
able to the agent. The feasible actions are determined by the cur-
rent state s; and are represented as A(s;). At each time step ¢, the
agent takes action a; € A(sy), which involves selecting a document
c; € C; for the next ranking position ¢ + 1.

Transition function. The transition function T (s, a) returns
the next state s;4+1 € S resulting from taking action a; in state s;.
In a deterministic environment, the outcome of this function is
unique, meaning that for each state-action pair, there is a specific
next state. In a given state, s;, after taking action a;, the next state is
constructed by updating the candidate set and also incrementing the
time step. The candidate set C; is updated by removing the chosen
document ¢; from the candidate set, and the time step is incremented
by one, forming the next state s;+1 according to Equation 1:

where Cry1 =Cr\ {ci} (1)

Reward. The reward R(S, A) provides immediate feedback, also
known as reinforcement. It represents the reward the agent receives
for executing action a; € A(s;). In the context of ranking, the action
a; corresponds to the selection of a document ¢; and R(sy, ar) is
correlated to the quality of ¢;. The function R(s, a) is designed to
prioritize positioning the most relevant documents at the top. Thus,
it can depend on the relevancy of the document c; selected by action
az, denoted as ¥(c;), and its position. To promote the early selection
of highly relevant documents, we apply a time-based penalty. The
reward function is formulated according to Equation 2:

st+1 = T(s,ap) = [t +1,Cra1]

¥(ci)

R(st,ar) = Togy(t+ 1)

where a; :select ¢;€Cy  (2)

As shown in Equation 2, the logarithmic denominator of the current
time step ¢ ensures that selecting relevant documents earlier yields
a higher reward, encouraging the agent to place the most relevant
documents at the top of the ranked list.

In this context, the model consists of two components: (1) a
language model which serves as the feature extractor and whose
weights are not updated during the training. This language model
takes a concatenated query and document pair as input and gen-
erates a vector representation. The current time-step ¢ is then ap-
pended to the beginning of this vector representation to build
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a feature vector, x, which acts as the feature for the RL agent:
x=t+LM(q®d).
(2) The agent consists of two components: a) an experience replay
buffer, B, which stores and randomizes past experiences, and b) a
neural network N.

Action Value Function. The action value function, i.e., Q(s, a),
estimates the expected future rewards of taking action a; in state s;.
It combines immediate rewards and discounted future rewards to
provide a measure of the value of actions. In an MDP, the future re-
ward is worth less than the current reward, and therefore, a discount
factor y € (0, 1) is applied to future rewards. This discount factor,
along with the time step-related penalty in the reward function,
encourages the RL agent to try to select the most relevant docu-
ments sooner in order to maximize its total reward. When trying
to estimate Q, traditional RL methods like Q-learning struggle with
high-dimensional state spaces due to their inflexibility in scaling
state-action pairs. To overcome this scalability limit, we use DQN
[18], a popular reinforcement learning algorithm that employs a
neural network as a non-linear function approximator to estimate
the action-value function. The neural network in our RL agent, N
is parameterized by ¢. The input to this network, x,,, is the feature
vector of action a;. At a given time step ¢, we calculate the value of
action a; according to Equation 3:

oo
Q(s,ar; ) =B| D ¥¥reek |50 =sr.a0 = as 3)
k=0
where y € [0, 1) is the discount factor, which determines the im-
portance of future rewards, and r; is the reward received at time
step t. For each action, the expected value is defined as the sum of
the immediate reward and the expected future reward.
The Learning Process. Our proposed learning process consists of
two phases, explained below and formally described in Algorithm 1.

The Experience Collection Phase: The first phase accumu-
lates experiences in the experience replay buffer B. For each query
in Qfs, we uniformly sample a document from Dy, by taking ac-
tion a; and add the observation tuple (s¢, az, 1, St+1), to B. This can
be seen in lines 3-7 of Algorithm 1. Experience replay enhances
data efficiency by allowing each experience tuple to contribute to
multiple weight updates [19, 39]. Additionally, experience replay
helps prevent catastrophic forgetting, where new experiences over-
write prior knowledge, a critical issue in data-scarce domains where
forgetting learned interactions can degrade performance [27, 31].

The Training Phase: Once the replay buffer is filled, our RL
process randomly samples from the replay buffer and updates the
network based on these samples as shown on Line 14 of Algorithm 1.

Randomly sampling experiences breaks the correlation between
consecutive experiences, leading to reduced variance, improved
stability, and better learning performance [15, 19, 39].

For each experience tuple (s, a, 1+, St+1), the feature vector of
action ay, Xg,, is constructed using the language model LM. Then
Xg, is processed through the network N to output the current Q-
value, Q(at), which needs to approximate the target value, Qg,.
The current Q-value is defined in Equation 4 as follows:

Qlst,ars ) = N (xa,5 1) )
On this basis, Q’ is calculated for all the possible actions in sz41.
The maximum value of Q' is denoted as U; and represents the
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Algorithm 1 Sample Collection and RL Model Training

1: Q « Initialize(¢o)

2: B« (), max size=N
3: for g; € Qps do

4 for timestep t: 0 < t < len(Dg,) do

5: a; ~ Uniform(Dyg,)

6: Execute action a; in sz, then observe (s, S¢+1)
7: B« BU{(st,as,71,5t+41)}
8
9

> Phase 1: Filling the Replay Buffer

if |B| = max_size then
break

end if
end for
: end for

> Phase 2: Sampling from Replay Buffer and RL Model
Training

13: for {(sj, aj, ri,si+1)} ~ Uniform(B) do

14 O(si ai; ¢i) = N(xq;; di)
15: for a’ € Ciz1 do

16: Q' =N(xq;9i)

17: end for

18: Ui = maxgy

19: Qai =ri+ in

200 L(§) = (Qaq; — Q(si, a1))?
21 Pis1 i —nVL(¢)

22: end for

maximum reward that can be expected by taking action a; and
transitioning to state s;41. The target Q-value, Qg,, is calculated
as the sum of immediate reward, r; and the discounted U;. This is
shown in Lines 15-19 of Algorithm 1 and Equation 5, as follows:

©)

Qa, = re +ymaxQ(ses1, a5 dr)

As the RL model is trained, it is expected Q to move towards Q
to indicate how much reward can be expected if an action a; is
taken in time step t. In order to find the optimal values of ¢ for
the networks, we adopt the mean squared error (MSE) between
Q and Q, shown in Equation 6, as the training loss function. This
corresponds to Line 20 in Algorithm 1.

L($) =E [(Qa, - 00, at;qst))Z]

Finally, the weights of the network are updated using gradient
descent and learning rate 7, as shown on Line 21 of Algorithm 1.

(6)

3 Experiments

Research Questions (RQs). We explore three research questions
as follows: (RQ1) we assess whether our proposed model is gener-
alizabile on different language models and whether it shows stable
performance when the number of training samples change; (RQ2)
we investigate whether the performance of our model is competi-
tive with existing state of the art neural rankers, a state-of-the art
few shot ranker, and the unsupervised lexical BM25 approach; and,
(RQ3) we explore whether our RL-based approach is able to show
better performance compared to strong RL-based rankers.

Dataset. We conduct experiments on the MS MARCO v1 dataset
[21], which contains 8.8 million passages. For training, we randomly
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Figure 2: Comparison w. neural, few-shot & lexical baselines.

sample 2,000 queries (a small set to replicate a few shot scenario)
from the 501k queries with relevance judgments. For evaluation,
we use the TREC Deep Learning Track (DL-2019, DL-2020), which
features more challenging queries and richer relevance labels.
Implementation Details.!. We trained our model on a 9-layer
FFN, with the learning rate of 0.001, a discount factor of 0.99, a
batch size of 1, a replay buffer size of 10,000, and 100,000 episodes.
Findings. In (RQ1), we investigate the generalizability and stabil-
ity of our proposed approach. For the sake of generalizability, we
report the performance of our proposed approach when applied on
different language models, namely RoBERTa [16], ELECTRA [4],
DeBERTa [8], and ALBERT [14]. These models are used in their
original pre-trained format without any further fine-tuning for the
ranking task. As shown in Figure 1, our proposed approach shows
similar performance on both TREC DL 2019 and TREC 2020 regard-
less of the language model that is used for its training. Furthermore,
in order to assess the stability, we train our proposed model on all
four language models using four different train set sizes, including
100, 200, 1000, and 2000 training samples. The results can again be
seen in Figure 1. As seen in the figure, model performances are en-
hanced as the size of the training set increases from 100 samples to
2,000 samples by approximately 10%. The increase in performance
is smooth for all models on both datasets. We also note that re-
gardless of the test set and the language model, all models perform
quite strongly, even when trained on 100 samples and exhibit stable
performance as train set size increases.

In the second research question (RQ2), we compare our approach
against a state-of-the-art SBERT neural ranking baseline using
a cross-encoder architecture [24], as well as the state-of-the-art
few-shot ranker [10], and the lexical-based BM25 baseline, which
requires no training. Based on findings from RQ1, we report results
only for the DeBERTa model due to space constraints. Figure 2
compares our model with SBERT, P3Rank, and BM25. BM25 remains

10ur code and data is available on GitHub: https://github.com/ShivaSoleimany/rl_
few_shot_ranker
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Figure 3: Benchmarking with state-of-the-art RL baselines.

unaffected by training size, achieving nDCG@10 scores of 0.505 and
0.479 on TREC DL 2019 and DL 2020, respectively. The key finding
in RQ2 is that SBERT fails to learn effectively from limited samples,
maintaining nDCG@10 below 0.1 across all training sizes, even
with 2,000 training samples. Our model consistently outperforms
P3Rank ( the state-of-the-art few-shot ranker) and scales effectively
with increasing training samples, unlike SBERT and P3Rank. It also
achieves consistently higher performance than the BM25 baseline.

In RQ3, we compare our approach against two state-of-the-art
RL-based ranking models: MDPRank [40] and CUOLR [45]. This
research question examines (1) whether the efficiency of our RL-
based method in learning from limited samples extends to other RL
baselines, and (2) whether our approach is more sample-efficient
due to its architectural design. Figure 3 compares our approach
with MDPRank and CUOLR on both test sets, leading to three key
observations. (i) Both MDPRank and CUOLR outperform neural
rankers like SBERT in low-resource settings, consistently achieving
nDCG@10 above 0.2, whereas SBERT remains below 0.05 under
similar conditions. This highlights the effectiveness of RL-based
methods for few-shot learning. (ii)) While more effective than neural
rankers, MDPRank employs a policy gradient algorithm, which is
sample inefficient due to noisy gradient estimates and high variance
during training [20]. As a result, it performs worse than our ap-
proach, which is more sample-efficient. (iii) MDPRank plateaus in
performance as training data increases, whereas our model contin-
ues improving with more training samples. (iv) Although CUOLR
outperforms neural rankers, it relies on a soft actor-critic algo-
rithm originally designed for continuous action spaces, making it
inefficient for discrete action spaces [33]. Additionally, actor-critic
methods depend on an on-policy critic, limiting their effectiveness
compared to DQN-based models in discrete settings [33]. Conse-
quently, CUOLR exhibits lower performance than our approach,
which is significantly more efficient in practice.

4 Concluding Remarks

We propose a reinforcement learning (RL)-based re-ranking model
to address data inefficiency in neural rankers for few-shot scenarios.
Built on a Deep Q-learning Network (DQN), our approach enhances
sample efficiency through experience replay and optimized action
selection via Q-value estimation. Extensive experiments show our
model significantly outperforms both data-intensive, RL-based and
strong few-shot ranking baselines, achieving high effectiveness in
NDCG while learning meaningful ranking policies from limited
data.
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